Abstract
In our current building design philosophy, structural design is based on static predictions of the loads a building will need to withstand and the services it will need to provide. However, one study found that 60% of all buildings are demolished due to obsolescence. To combat our obsolescence-demolition culture, we turn to Nature for lessons about adaptable structural design. In this paper, we investigate the structural adaptability of the T. terebra spiraled turret shell through finite element modeling and parametric studies. The shell is able to change its structure over time to meet changing performance demands—a feat of adaptability that could transform our current infrastructure design. Modeling the shell’s growth process is an early and simple attempt at characterizing adaptability. As the mollusk deposits material overtime, its shell wall thickness changes, and its number of whorls increases. We designed parametric studies around these two modes of growth and investigated their effect on structural integrity and living convenience for the mollusk. By drawing parallels between the shell structure and human structures, we demonstrate connections between engineering challenges and Nature’s solutions. We encourage readers to consider biomimicry as a source of inspiration for their own quantitative studies for a more sustainable world.
Funder
U.S. Department of Health, Education and Welfare
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)
Reference44 articles.
1. Infrastructure Obsolescence and Design Service Life
2. Minnesota Demolition Survey: Phase Two Report,2004
3. Demolition and New Building on Local Authority Estates,2000
4. Survey on Real Life Span of Office Buildings in Japan;Yashiro,1990
5. How Buildings Learn: What Happens after They’re Built;Brand,1995
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献