Chaotic Effect-Based Array Duffing Systems with Improved Nonlinear Restoring Force for Weak Signal Detection in Dynamic MWD

Author:

Yang Yi1ORCID,Ding Qian1,Gao Yi1,Chen Jia1

Affiliation:

1. School of Electronic Engineering, Xi’an Shiyou University, Xi’an 710065, China

Abstract

In the process of dynamic Measurement While Drilling (MWD), the strong vibration and rapid rotation of the Bottom Hole Assembly (BHA) lead to multi-frequency and high-amplitude noise interference in the attitude measurement signal. The weak original signal and extremely low signal-to-noise ratio (SNR) are always the technical difficulties of dynamic MWD. To solve this problem, this paper uses the chaotic effect of the Duffing system, which takes the expression (−x3 + x5) as a nonlinear restoring force to detect the weak characteristic signal of downhole dynamic MWD. First of all, in order to meet the limit condition of the chaotic phase transition of the system output, the frequency value of the characteristic signal is reconstructed and transformed based on the variable scale theory. Then, in order to solve the influence of the initial phase of the characteristic signal on the detection accuracy, a detection model based on the array Duffing system is presented, and a frequency-detection scheme with all-phase coverage is given. Finally, another array Duffing system is designed for the parameter estimation of the characteristic signal. The critical value of chaotic phase transition is determined by adjusting the amplitude of the driving signal of the array Duffing system, and then the amplitude and phase parameters of the characteristic signal are synchronously estimated. The experimental results show that the proposed method can effectively extract the weak characteristic signal within the strong noise, and the SNR of the characteristic signal can be as low as −21 dB. Through the attitude calculation for the extracted characteristic signal, it can be seen that the proposed method can improve the accuracy of the inclination of the drilling tool significantly, which proves the feasibility and effectiveness of the method proposed in this paper.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Shaanxi Provincial

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3