Task Offloading Decision-Making Algorithm for Vehicular Edge Computing: A Deep-Reinforcement-Learning-Based Approach

Author:

Shi Wei12ORCID,Chen Long12,Zhu Xia12

Affiliation:

1. School of Computer Science and Engineering, Southeast University, Nanjing 211189, China

2. The Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 211189, China

Abstract

Efficient task offloading decision is a crucial technology in vehicular edge computing, which aims to fulfill the computational performance demands of complex vehicular tasks with respect to delay and energy consumption while minimizing network resource competition and consumption. Conventional distributed task offloading decisions rely solely on the local state of the vehicle, failing to optimize the utilization of the server’s resources to its fullest potential. In addition, the mobility aspect of vehicles is often neglected in these decisions. In this paper, a cloud-edge-vehicle three-tier vehicular edge computing (VEC) system is proposed, where vehicles partially offload their computing tasks to edge or cloud servers while keeping the remaining tasks local to the vehicle terminals. Under the restrictions of vehicle mobility and discrete variables, task scheduling and task offloading proportion are jointly optimized with the objective of minimizing the total system cost. Considering the non-convexity, high-dimensional complex state and continuous action space requirements of the optimization problem, we propose a task offloading decision-making algorithm based on deep deterministic policy gradient (TODM_DDPG). TODM_DDPG algorithm adopts the actor–critic framework in which the actor network outputs floating point numbers to represent deterministic policy, while the critic network evaluates the action output by the actor network, and adjusts the network evaluation policy according to the rewards with the environment to maximize the long-term reward. To explore the algorithm performance, this conduct parameter setting experiments to correct the algorithm core hyper-parameters and select the optimal combination of parameters. In addition, in order to verify algorithm performance, we also carry out a series of comparative experiments with baseline algorithms. The results demonstrate that in terms of reducing system costs, the proposed algorithm outperforms the compared baseline algorithm, such as the deep Q network (DQN) and the actor–critic (AC), and the performance is improved by about 13% on average.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3