Cross-Entropy Learning for Aortic Pathology Classification of Artificial Multi-Sensor Impedance Cardiography Signals

Author:

Spindelböck Tobias,Ranftl SaschaORCID,von der Linden WolfgangORCID

Abstract

An aortic dissection, a particular aortic pathology, occurs when blood pushes through a tear between the layers of the aorta and forms a so-called false lumen. Aortic dissection has a low incidence compared to other diseases, but a relatively high mortality that increases with disease progression. An early identification and treatment increases patients’ chances of survival. State-of-the-art medical imaging techniques have several disadvantages; therefore, we propose the detection of aortic dissections through their signatures in impedance cardiography signals. These signatures arise due to pathological blood flow characteristics and a blood conductivity that strongly depends on the flow field, i.e., the proposed method is, in principle, applicable to any aortic pathology that changes the blood flow characteristics. For the signal classification, we trained a convolutional neural network (CNN) with artificial impedance cardiography data based on a simulation model for a healthy virtual patient and a virtual patient with an aortic dissection. The network architecture was tailored to a multi-sensor, multi-channel time-series classification with a categorical cross-entropy loss function as the training objective. The trained network typically yielded a specificity of (93.9±0.1)% and a sensitivity of (97.5±0.1)%. A study of the accuracy as a function of the size of an aortic dissection yielded better results for a small false lumen with larger noise, which emphasizes the question of the feasibility of detecting aortic dissections in an early state.

Funder

Graz University of Technology

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3