Knowledge-Enhanced Prompt Learning for Few-Shot Text Classification

Author:

Liu Jinshuo1,Yang Lu1

Affiliation:

1. Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

Abstract

Classification methods based on fine-tuning pre-trained language models often require a large number of labeled samples; therefore, few-shot text classification has attracted considerable attention. Prompt learning is an effective method for addressing few-shot text classification tasks in low-resource settings. The essence of prompt tuning is to insert tokens into the input, thereby converting a text classification task into a masked language modeling problem. However, constructing appropriate prompt templates and verbalizers remains challenging, as manual prompts often require expert knowledge, while auto-constructing prompts is time-consuming. In addition, the extensive knowledge contained in entities and relations should not be ignored. To address these issues, we propose a structured knowledge prompt tuning (SKPT) method, which is a knowledge-enhanced prompt tuning approach. Specifically, SKPT includes three components: prompt template, prompt verbalizer, and training strategies. First, we insert virtual tokens into the prompt template based on open triples to introduce external knowledge. Second, we use an improved knowledgeable verbalizer to expand and filter the label words. Finally, we use structured knowledge constraints during the training phase to optimize the model. Through extensive experiments on few-shot text classification tasks with different settings, the effectiveness of our model has been demonstrated.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference41 articles.

1. Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. (2019, January 2–7). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA.

2. Exploring the limits of transfer learning with a unified text-to-text transformer;Raffel;J. Mach. Learn. Res.,2020

3. Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016, January 1–5). SQuAD: 100,000+ Questions for Machine Comprehension of Text. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA.

4. Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., and Brown, D. (2019). Text classification algorithms: A survey. Information, 10.

5. Liu, T., Hu, Y., Gao, J., Sun, Y., and Yin, B. (2021, January 10–15). Zero-shot text classification with semantically extended graph convolutional network. Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3