Data Sorting Influence on Short Text Manual Labeling Quality for Hierarchical Classification

Author:

Narushynska Olga1ORCID,Teslyuk Vasyl1ORCID,Doroshenko Anastasiya1ORCID,Arzubov Maksym1ORCID

Affiliation:

1. Department of Automated Control Systems, Lviv Polytechnic National University, 79013 Lviv, Ukraine

Abstract

The precise categorization of brief texts holds significant importance in various applications within the ever-changing realm of artificial intelligence (AI) and natural language processing (NLP). Short texts are everywhere in the digital world, from social media updates to customer reviews and feedback. Nevertheless, short texts’ limited length and context pose unique challenges for accurate classification. This research article delves into the influence of data sorting methods on the quality of manual labeling in hierarchical classification, with a particular focus on short texts. The study is set against the backdrop of the increasing reliance on manual labeling in AI and NLP, highlighting its significance in the accuracy of hierarchical text classification. Methodologically, the study integrates AI, notably zero-shot learning, with human annotation processes to examine the efficacy of various data-sorting strategies. The results demonstrate how different sorting approaches impact the accuracy and consistency of manual labeling, a critical aspect of creating high-quality datasets for NLP applications. The study’s findings reveal a significant time efficiency improvement in terms of labeling, where ordered manual labeling required 760 min per 1000 samples, compared to 800 min for traditional manual labeling, illustrating the practical benefits of optimized data sorting strategies. Comparatively, ordered manual labeling achieved the highest mean accuracy rates across all hierarchical levels, with figures reaching up to 99% for segments, 95% for families, 92% for classes, and 90% for bricks, underscoring the efficiency of structured data sorting. It offers valuable insights and practical guidelines for improving labeling quality in hierarchical classification tasks, thereby advancing the precision of text analysis in AI-driven research. This abstract encapsulates the article’s background, methods, results, and conclusions, providing a comprehensive yet succinct study overview.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3