Nitrate and Ammonium Deposition in the Midwestern Fragmented Forest

Author:

Rivera-Cubero Luis D.1,Dowtin Asia L.1,Rothstein David E.1

Affiliation:

1. Department of Forestry, Michigan State University, East Lansing, MI 48824, USA

Abstract

Whereas the impacts of N deposition on forest ecosystems have been well studied in remote areas in predominantly forested landscapes, we know relatively less about the impacts of N deposition on forests in heavily human-modified landscapes. We studied the influence of adjacent land use, local point sources, and woodlot stand structure on subcanopy N transport and enrichment via throughfall in three woodlot fragments in southern Lower Michigan, USA. We found that one site had markedly higher TF N concentrations compared to the other two; however, our data indicate that elevated TF concentrations resulted from differences in tree species composition, rather than differences in surrounding land use. Specifically, we observed that the local abundance of basswood (Tilia americana) was positively associated and the local abundance of northern red oak (Quercus rubra) was negatively associated with TF N concentrations. One site had markedly greater TF N fluxes compared to the other two, which was driven by a lack of understory vegetation, possibly due to higher deer browsing at this site. Together, the results of this study demonstrated that TF N concentrations and fluxes were more strongly influenced by the internal characteristics of fragmented woodlots, such as forest structure and species composition, than by the surrounding land use.

Funder

US Department of Agriculture National Institute for Food and Agriculture

National Needs Graduate and Postgraduate Fellowship Program

McIntire Stennis Capacity Grants

Michigan Department of Natural Resources Partnership for Ecosystems Research and Management

Publisher

MDPI AG

Subject

Forestry

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3