In Vivo Imaging of Thyroid Cancer with 99mTc-TR1401 and 99mTc-TR1402: A Comparison Study in Dogs

Author:

Galli Filippo,Varani MichelaORCID,Lauri Chiara,Campagna GiuseppeORCID,Balogh Lajos,Weintraub Bruce D.,Szkudlinski Mariusz W.,Bartolazzi Armando,Manni Isabella,Piaggio GiuliaORCID,Signore AlbertoORCID

Abstract

Differentiated thyroid cancer (DTC) cells may lose NIS expression and iodine uptake, but usually express TSH receptors (TSHR). Therefore, the aim of our study was to compare two radiolabeled superagonist TSH analogues for DTC imaging. These analogues (namely TR1401 and TR1402) have a higher TSHR binding affinity than recombinant human TSH (Thyrogen®). Radiolabeling was performed with technetium-99m using an indirect method via HYNIC conjugation and was followed by in vitro quality controls and binding assay on TSHR-positive cell lines (ML-1). An in vitro binding assay was also performed and compared with radiolabeled human recombinant TSH. In vivo imaging was performed in four dogs with spontaneous follicular thyroid carcinoma with solid poorly differentiated areas with 99mTc-TR1401 SPECT/CT, 99mTc-TR1402 SPECT/CT, and [18F]FDG PET/CT on different days within 2 weeks. TR1401 and TR1402 were labeled with high specific activity (8.3 ± 1.2 MBq/µg) and retention of their biological activity and structural integrity. Both agonists were able to efficiently bind TSHR receptors expressed by cell lines with dissociation constants (Kd) of 2.7 nM for 99mTc-TR1401 and 0.5 nM for 99mTc-TR1402 compared with 99mTc-Thyrogen (Kd = 8.4 nM). In tumor-targeting experiments, a focal uptake was observed in dogs with spontaneous intraglandular thyroid carcinoma, in which TSHR expression was confirmed by immunohistochemistry. 99mTc-TR1402 provided higher T/B than 99mTc-TR1401 and [18F]FDG (12.9 ± 1.3, 10.2 ± 0.7, and 3.8 ± 0.6, respectively; all p < 0.001). Given these results, 99mTc-TR1402 appears to be a useful tool for in vivo imaging of thyroid cancer.

Funder

Associazione Italiana per la Ricerca sul Cancro

Sapienza Università di Roma

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3