A Distributed Hybrid Community Detection Methodology for Social Networks

Author:

Georgiou Konstantinos,Makris Christos,Pispirigos Georgios

Abstract

Nowadays, the amount of digitally available information has tremendously grown, with real-world data graphs outreaching the millions or even billions of vertices. Hence, community detection, where groups of vertices are formed according to a well-defined similarity measure, has never been more essential affecting a vast range of scientific fields such as bio-informatics, sociology, discrete mathematics, nonlinear dynamics, digital marketing, and computer science. Even if an impressive amount of research has yet been published to tackle this NP-hard class problem, the existing methods and algorithms have virtually been proven inefficient and severely unscalable. In this regard, the purpose of this manuscript is to combine the network topology properties expressed by the loose similarity and the local edge betweenness, which is a currently proposed Girvan–Newman’s edge betweenness measure alternative, along with the intrinsic user content information, in order to introduce a novel and highly distributed hybrid community detection methodology. The proposed approach has been thoroughly tested on various real social graphs, roundly compared to other classic divisive community detection algorithms that serve as baselines and practically proven exceptionally scalable, highly efficient, and adequately accurate in terms of revealing the subjacent network hierarchy.

Funder

European Union (European Social Fund) and Greek national funds

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference44 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3