Abstract
With the rapid expansion of applied 3D computational vision, shape descriptors have become increasingly important for a wide variety of applications and objects from molecules to planets. Appropriate shape descriptors are critical for accurate (and efficient) shape retrieval and 3D model classification. Several spectral-based shape descriptors have been introduced by solving various physical equations over a 3D surface model. In this paper, for the first time, we incorporate a specific manifold learning technique, introduced in statistics and machine learning, to develop a global, spectral-based shape descriptor in the computer graphics domain. The proposed descriptor utilizes the Laplacian Eigenmap technique in which the Laplacian eigenvalue problem is discretized using an exponential weighting scheme. As a result, our descriptor eliminates the limitations tied to the existing spectral descriptors, namely dependency on triangular mesh representation and high intra-class quality of 3D models. We also present a straightforward normalization method to obtain a scale-invariant and noise-resistant descriptor. The extensive experiments performed in this study using two standard 3D shape benchmarks—high-resolution TOSCA and McGill datasets—demonstrate that the present contribution provides a highly discriminative and robust shape descriptor under the presence of a high level of noise, random scale variations, and low sampling rate, in addition to the known isometric-invariance property of the Laplace–Beltrami operator. The proposed method significantly outperforms state-of-the-art spectral descriptors in shape retrieval and classification. The proposed descriptor is limited to closed manifolds due to its inherited inability to accurately handle manifolds with boundaries.
Funder
GE Healthcare
Center for Predictive Computational Phenotyping
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献