Method for Human Ear Localization in Controlled and Uncontrolled Environments

Author:

Lopez-Hernandez Eydi1,Magadan-Salazar Andrea1ORCID,Pinto-Elías Raúl1,González-Franco Nimrod1,Zuniga-Garcia Miguel A.2

Affiliation:

1. Tecnológico Nacional de México/CENIDET, Cuernavaca 62490, Morelos, Mexico

2. PCI Energy Solutions, Norman, OK 73072, USA

Abstract

One of the fundamental stages in recognizing people by their ears, which most works omit, is locating the area of interest. The sets of images used for experiments generally contain only the ear, which is not appropriate for application in a real environment, where the visual field may contain part of or the entire face, a human body, or objects other than the ear. Therefore, determining the exact area where the ear is located is complicated, mainly in uncontrolled environments. This paper proposes a method for ear localization in controlled and uncontrolled environments using MediaPipe, a tool for face localization, and YOLOv5s architecture for detecting the ear. The proposed method first determines whether there are cues that indicate that a face exists in an image, and then, using the MediaPipe facial mesh, the points where an ear potentially exists are obtained. The extracted points are employed to determine the ear length based on the proportions of the human body proposed by Leonardo Da Vinci. Once the dimensions of the ear are obtained, the delimitation of the area of interest is carried out. If the required elements are not found, the model uses the YOLOv5s architecture module, trained to recognize ears in controlled environments. We employed four datasets for testing (i) In-the-wild Ear Database, (ii) IIT Delhi Ear Database, (iii) AMI Ear Database, and (iv) EarVN1.0. Also, we used images from the Internet and some acquired using a Redmi Note 11 cell phone camera. An accuracy of 97% with an error of 3% was obtained with the proposed method, which is a competitive measure considering that tests were conducted in controlled and uncontrolled environments, unlike state-of-the-art methods.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3