Element Aggregation for Estimation of High-Dimensional Covariance Matrices

Author:

Yang Jingying1ORCID

Affiliation:

1. School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

This study addresses the challenge of estimating high-dimensional covariance matrices in financial markets, where traditional sparsity assumptions often fail due to the interdependence of stock returns across sectors. We present an innovative element-aggregation method that aggregates matrix entries to estimate covariance matrices. This method is designed to be applicable to both sparse and non-sparse matrices, transcending the limitations of sparsity-based approaches. The computational simplicity of the method’s implementation ensures low complexity, making it a practical tool for real-world applications. Theoretical analysis then confirms the method’s consistency and effectiveness with its convergence rate in specific scenarios. Additionally, numerical experiments validate the method’s superior algorithmic performance compared to conventional methods, as well as the reduction in relative estimation errors. Furthermore, empirical studies in financial portfolio optimization demonstrate the method’s significant risk management benefits, particularly its ability to effectively mitigate portfolio risk even with limited sample sizes.

Funder

Doctoral Foundation of Yunnan Normal University

Publisher

MDPI AG

Reference30 articles.

1. The power of (non-) linear shrinking: A review and guide to covariance matrix estimation;Ledoit;J. Financ. Econ.,2022

2. Econometric Computing with HC and HAC Covariance Matrix Estimators;Zeileis;J. Stat. Softw.,2004

3. Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets Goldilocks;Ledoit;Rev. Financ. Stud.,2017

4. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics;Strimmer;Stat. Appl. Genet. Mol.,2005

5. Probabilistic principal component analysis;Tipping;J. R. Stat. Soc. Ser. B Stat. Method.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3