Analysis of Probability Distributions for Modelling Extreme Rainfall Events and Detecting Climate Change: Insights from Mathematical and Statistical Methods

Author:

Montes-Pajuelo Raúl1ORCID,Rodríguez-Pérez Ángel M.23ORCID,López Raúl45ORCID,Rodríguez César A.6ORCID

Affiliation:

1. Department of Integrated Sciences, Applied Mathematics Section, Campus “El Carmen”, University of Huelva, 21004 Huelva, Spain

2. Department of Engineering, University of Almería, 04120 Almería, Spain

3. CIMEDES Research Center (CeiA3), University of Almería, Ctra. Sacramento, s/n, La Cañada, 04120 Almería, Spain

4. Department of Agricultural and Forest Sciences and Engineering, University of Lleida, 25003 Lleida, Spain

5. Fluvial Dynamics Research Group (RIUS), University of Lleida, 25003 Lleida, Spain

6. Department of Mining, Mechanical, Energy and Construction Engineering, Campus “El Carmen”, University of Huelva, 21004 Huelva, Spain

Abstract

Exploring the realm of extreme weather events is indispensable for various engineering disciplines and plays a pivotal role in understanding climate change phenomena. In this study, we examine the ability of 10 probability distribution functions—including exponential, normal, two- and three-parameter log-normal, gamma, Gumbel, log-Gumbel, Pearson type III, log-Pearson type III, and SQRT-ET max distributions—to assess annual maximum 24 h rainfall series obtained over a long period (1972–2022) from three nearby meteorological stations. Goodness-of-fit analyses including Kolmogorov–Smirnov and chi-square tests reveal the inadequacy of exponential and normal distributions in capturing the complexity of the data sets. Subsequent frequency analysis and multi-criteria assessment enable us to discern optimal functions for various scenarios, including hydraulic engineering and sediment yield estimation. Notably, the log-Gumbel and three-parameter log-normal distributions exhibit superior performance for high return periods, while the Gumbel and three-parameter log-normal distributions excel for lower return periods. However, caution is advised regarding the overuse of log-Gumbel, due to its high sensitivity. Moreover, as our study considers the application of mathematical and statistical methods for the detection of extreme events, it also provides insights into climate change indicators, highlighting trends in the probability distribution of annual maximum 24 h rainfall. As a novelty in the field of functional analysis, the log-Gumbel distribution with a finite sample size is utilised for the assessment of extreme events, for which no previous work seems to have been conducted. These findings offer critical perspectives on extreme rainfall modelling and the impacts of climate change, enabling informed decision making for sustainable development and resilience.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3