Hybrid Model of Natural Time Series with Neural Network Component and Adaptive Nonlinear Scheme: Application for Anomaly Detection

Author:

Mandrikova Oksana1,Mandrikova Bogdana1

Affiliation:

1. Institute of Cosmophysical Research and Radio Wave Propagation, Far Eastern Branch of the Russian Academy of Sciences, Mirnaya St, 7, Paratunka, 684034 Kamchatskiy Kray, Russia

Abstract

It is often difficult to describe natural time series due to implicit dependences and correlated noise. During anomalous natural processes, anomalous features appear in data. They have a nonstationary structure and do not allow us to apply traditional methods for time series modeling. In order to solve these problems, new models, adequately describing natural data, are required. A new hybrid model of a time series (HMTS) with a nonstationary structure is proposed in this paper. The HMTS has regular and anomalous components. The HMTS regular component is determined on the basis of an autoencoder neural network. To describe the HMTS anomalous component, an adaptive nonlinear approximating scheme (ANAS) is used on a wavelet basis. HMTS is considered in this investigation for the problem of neutron monitor data modeling and anomaly detection. Anomalies in neutron monitor data indicate negative factors in space weather. The timely detection of these factors is critically important. This investigation showed that the developed HMTS adequately describes neutron monitor data and has satisfactory results from the point of view of numeric performance. The MSE model values are close to 0 and errors are white Gaussian noise. In order to optimize the estimate of the HMTS anomalous component, the likelihood ratio test was applied. Moreover, the wavelet basis, giving the least losses during ANAS construction, was determined. Statistical modeling results showed that HMTS provides a high accuracy of anomaly detection. When the signal/noise ratio is 1.3 and anomaly durations are more than 60 counts, the probability of their detection is close to 90%. This is a high rate in the problem domain under consideration and provides solution reliability of the problem of anomaly detection in neutron monitor data. Moreover, the processing of data from several neutron monitor stations showed the high sensitivity of the HMTS. This shows the possibility to minimize the number of engaged stations, maintaining anomaly detection accuracy compared to the global survey method widely used in this field. This result is important as the continuous operation of neutron monitor stations is not always provided. Thus, the results show that the developed HMTS has the potential to address the problem of anomaly detection in neutron monitor data even when the number of operating stations is small. The proposed HMTS can help us to decrease the risks of the negative impact of space weather anomalies on human health and modern infrastructure.

Funder

IKIR FEB RAS State Task

Publisher

MDPI AG

Reference35 articles.

1. Space weather and risks of space activity;Kuznetsov;Space Tech. Technol.,2014

2. Schlickeiser, R. (2002). Cosmic Ray Astrophysics, Springer GmbH & Co., KG.

3. GLE and Sub-GLE Redefinition in the Light of High-Altitude Polar Neutron Monitors;Poluianov;Sol. Phys.,2017

4. Global survey method for the world network of neutron monitors;Belov;Geomagn. Aeron.,2018

5. (2023, November 01). Australian Space Weather, Available online: www.sws.bom.gov.au.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3