Behavior Prediction and Inverse Design for Self-Rotating Skipping Ropes Based on Random Forest and Neural Network

Author:

Qiu Yunlong1,Wu Haiyang1,Dai Yuntong1ORCID,Li Kai1ORCID

Affiliation:

1. School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China

Abstract

Self-oscillatory systems have great utility in energy harvesting, engines, and actuators due to their ability to convert ambient energy directly into mechanical work. This characteristic makes their design and implementation highly valuable. Due to the complexity of the motion process and the simultaneous influence of multiple parameters, computing self-oscillatory systems proves to be challenging, especially when conducting inverse parameter design. To simplify the computational process, a combined approach o0f Random Forest (RF) and Backpropagation Neural Network (BPNN) algorithms is employed. The example used is a self-rotating skipping rope made of liquid crystal elastomer (LCE) fiber and a mass block under illumination. Numerically solving the governing equations yields precise solutions for the rotation frequency of the LCE skipping rope under various system parameters. A database containing 138,240 sets of parameter conditions and their corresponding rotation frequencies is constructed to train the RF and BPNN models. The training outcomes indicate that RF and BPNN can accurately predict the self-rotating skipping rope frequency under various parameters, demonstrating high stability and computational efficiency. This approach allows us to discover the influences of distinct parameters on the rotation frequency as well. Moreover, it is capable of inverse design, meaning it can derive the corresponding desired parameter combination from a given rotation frequency. Through this study, a deeper understanding of the dynamic behavior of self-oscillatory systems is achieved, offering a new approach and theoretical foundation for their implementation and construction.

Funder

University Natural Science Research Project of Anhui Province

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

Housing and Urban-Rural Development Science and Technology Project of Anhui Province

Publisher

MDPI AG

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-spinning of liquid crystal elastomer tubes under constant light intensity;Communications in Nonlinear Science and Numerical Simulation;2024-12

2. Self-rotation of a liquid crystal elastomer rod under constant illumination;International Journal of Mechanical Sciences;2024-12

3. Self-rotation-eversion of an anisotropic-friction-surface torus;International Journal of Mechanical Sciences;2024-11

4. Multimodal self-operation of a liquid crystal elastomer spring-linkage mechanism under constant light;International Journal of Solids and Structures;2024-10

5. Self-oscillation of cantilevered silicone oil paper sheet system driven by steam;Thin-Walled Structures;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3