Risk Assessment Edge Contract for Efficient Resource Allocation

Author:

Sheng Minghui1ORCID,Wang Hui1ORCID,Ma Maode2ORCID,Sun Yiying1,Zhou Run3

Affiliation:

1. College of Computer Science and Technology, Zhejiang Normal University, Jinhua 341000, China

2. College of Engineering, Qatar University, Doha 974, Qatar

3. College of Mechanical and Electrical Information, Yiwu Industrial and Commercial College, Jinhua 322000, China

Abstract

The rapid growth of edge devices and mobile applications has driven the adoption of edge computing to handle computing tasks closer to end-users. However, the heterogeneity of edge devices and their limited computing resources raise challenges in the efficient allocation of computing resources to complete services with different characteristics and preferences. In this paper, we delve into an edge scenario comprising multiple Edge Computing Servers (ECSs), multiple Device-to-Device (D2D) Edge Nodes (ENs), and multiple edge devices. In order to address the resource allocation challenge among ECSs, ENs, and edge devices in high-workload environments, as well as the pricing of edge resources within the resource market framework, we propose a Risk Assessment Contract Algorithm (RACA) based on risk assessment theory. The RACA enables ECSs to assess risks associated with local users by estimating their future revenue potential and updating the contract autonomously at present and in the future. ENs acquire additional resources from ECSs to efficiently complete local users’ tasks. Simultaneously, ENs can also negotiate reasonable resource requests and pricing with ECSs by a Stackelberg game algorithm. Furthermore, we prove the unique existence of Nash equilibrium in the established game, implying that equilibrium solutions can stably converge through computational methods in heterogeneous environments. Finally, through simulation experiments on the dataset, we demonstrate that risk assessment can better enhance the overall profit capability of the system. Moreover, through multiple experiments, we showcase the stability of the contract’s autonomous update capability. The RACA exhibits better utility in terms of system profit capabilities, stability in high-workload environments, and energy consumption. This work provides a more dynamic and effective solution to the resource allocation problem in edge systems under high-workload environments.

Funder

Zhejiang Normal University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3