Convex Quadratic Programming for Computing Geodesic Distances on Triangle Meshes

Author:

Chen Shuangmin1ORCID,Hei Nailei2,Hu Shun1ORCID,Yue Zijia1,He Ying3

Affiliation:

1. Qingdao University of Science and Technology, Qingdao 260061, China

2. Fudan University, Shanghai 200437, China

3. Nanyang Technologtical University, Singapore 639798, Singapore

Abstract

Querying the geodesic distance field on a given smooth surface is a fundamental research pursuit in computer graphics. Both accuracy and smoothness serve as common indicators for evaluating geodesic algorithms. In this study, we argue that ensuring that the norm of the triangle-wise estimated gradients is not larger than 1 is preferable compared to the widely used eikonal condition. Inspired by this, we formulate the geodesic distance field problem as a Quadratically Constrained Linear Programming (QCLP) problem. This formulation can be further adapted into a Quadratically Constrained Quadratic Programming (QCQP) problem by incorporating considerations for smoothness requirements. Specifically, when enforcing a Hessian-energy-based smoothing term, our formulation, named QCQP-Hessian, effectively mitigates the cusps in the geodesic isolines within the near-ridge area while maintaining accuracy in the off-ridge area. We conducted extensive experiments to demonstrate the accuracy and smoothness advantages of QCQP-Hessian.

Funder

Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3