An Algorithm for Calculating the Parameter Selection Area of a Doubly-Fed Induction Generator Based on the Guardian Map Method

Author:

Wang Yibo1,Chen Futao1,Jia Wei1,Wang Rui1

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110000, China

Abstract

Large-scale wind farms incorporating doubly-fed induction generators (DFIGs) are considered a promising direction for modern energy supply systems due to their role in reducing dependence on fossil energy sources. However, the dynamic interactions between DFIGs and AC grids sometimes lead to sub-synchronous oscillation (SSO) that threatens the safe and stable operation of wind power systems. Therefore, it is essential to develop a mathematical model and design an algorithm to quantitatively design the control parameters. Such algorithms are helpful in preventing or mitigating system stability problems coming from wind power connected to the grid and reducing damage to power equipment. The traditional state-space model is mainly established to determine the stable operating point and analyze the influence of parameters on the system operating mode. However, this method does not provide the selection area for the system parameters. To address this shortcoming, this paper introduces a modular state-space model for DFIGs containing series compensation lines and proposes an algorithm for calculating the parameter selection area based on the Guardian map method. First, a detailed modular state-space model based on the virtual synchronous generator (VSG) control is established. The modular model helps to reflect the relationship between state variables and focuses on describing the operating state of DFIGs in wind farms. Second, this paper focuses on the influence of VSG control parameters and compensation capacitance on SSO. It aims to clarify the role of the series compensation level and control parameters on SSO based on VSG control. Then, an algorithm for the parameter selection area based on the Guardian map is proposed and the area of the VSG-controlled DFIG is obtained. Finally, the accuracy and validity of the algorithm are verified by time domain simulation in MATLAB/Simulink and HIL experiment.

Publisher

MDPI AG

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3