FMA-Net: Fusion of Multi-Scale Attention for Grading Cervical Precancerous Lesions

Author:

Duan Zhuoran12,Xu Chao12,Li Zhengping12,Feng Bo12,Nie Chao12

Affiliation:

1. School of Integrated Ciruits, Anhui University, Hefei 230601, China

2. Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China

Abstract

Cervical cancer, as the fourth most common cancer in women, poses a significant threat to women’s health. Vaginal colposcopy examination, as the most cost-effective step in cervical cancer screening, can effectively detect precancerous lesions and prevent their progression into cancer. The size of the lesion areas in the colposcopic images varies, and the characteristics of the lesions are complex and difficult to discern, thus heavily relying on the expertise of the medical professionals. To address these issues, this paper constructs a vaginal colposcopy image dataset, ACIN-3, and proposes a Fusion Multi-scale Attention Network for the detection of cervical precancerous lesions. First, we propose a heterogeneous receptive field convolution module to construct the backbone network, which utilizes combinations of convolutions with different structures to extract multi-scale features from multiple receptive fields and capture features from different-sized regions of the cervix at different levels. Second, we propose an attention fusion module to construct a branch network, which integrates multi-scale features and establishes connections in both the spatial and channel dimensions. Finally, we design a dual-threshold loss function and introduce positive and negative thresholds to improve sample weights and address the issue of data imbalance in the dataset. Multiple experiments are conducted on the ACIN-3 dataset to demonstrate the superior performance of our approach compared to some classical and recent advanced methods. Our method achieves an accuracy of 92.2% in grading and 94.7% in detection, with average AUCs of 0.9862 and 0.9878. Our heatmap illustrates the accuracy of our approach in focusing on the locations of lesions.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3