Enhancing IoT Security: A Few-Shot Learning Approach for Intrusion Detection

Author:

Althiyabi Theyab1ORCID,Ahmad Iftikhar1ORCID,Alassafi Madini O.1ORCID

Affiliation:

1. Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Recently, the number of Internet of Things (IoT)-connected devices has increased daily. Consequently, cybersecurity challenges have increased due to the natural diversity of the IoT, limited hardware resources, and limited security capabilities. Intrusion detection systems (IDSs) play a substantial role in securing IoT networks. Several researchers have focused on machine learning (ML) and deep learning (DL) to develop intrusion detection techniques. Although ML is good for classification, other methods perform better in feature transformation. However, at the level of accuracy, both learning techniques have their own certain compromises. Although IDSs based on ML and DL methods can achieve a high detection rate, the performance depends on the training dataset size. Incidentally, collecting a large amount of data is one of the main drawbacks that limits performance when training datasets are lacking, and such methods can fail to detect novel attacks. Few-shot learning (FSL) is an emerging approach that is employed in different domains because of its proven ability to learn from a few training samples. Although numerous studies have addressed the issues of IDSs and improved IDS performance, the literature on FSL-based IDSs is scarce. Therefore, an investigation is required to explore the performance of FSL in IoT IDSs. This work proposes an IoT intrusion detection model based on a convolutional neural network as a feature extractor and a prototypical network as an FSL classifier. The empirical results were analyzed and compared with those of recent intrusion detection approaches. The accuracy results reached 99.44%, which shows a promising direction for involving FSL in IoT IDSs.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3