Heteropolyacid Ionic Liquid-Based MCF: An Efficient Heterogeneous Catalyst for Oxidative Desulfurization of Fuel

Author:

Pei Tingting1,Chen Yaxian1,Wang Huiting1,Xia Lixin2

Affiliation:

1. College of Chemistry, Liaoning University, Shenyang 110036, China

2. Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China

Abstract

A new type of catalyst was synthesized by immobilizing heteropolyacid on ionic liquid-modified mesostructured cellular silica foam (denoted as MCF) and applied to the oxidative desulfurization of fuel. The surface morphology and structure of the catalyst were characterized by XRD, TEM, N2 adsorption–desorption, FT-IR, EDS and XPS analysis. The catalyst exhibited good stability and desulfurization for various sulfur-containing compounds in oxidative desulfurization. Heteropolyacid ionic liquid-based MCF solved the shortage of the amount of ionic liquid and difficult separation in the process of oxidative desulfurization. Meanwhile, MCF had a special three-dimensional structure that was not only highly conducive to mass transfer but also greatly increased catalytic active sites and significantly improved catalytic efficiency. Accordingly, the prepared catalyst of 1-butyl-3-methyl imidazolium phosphomolybdic acid-based MCF (denoted as [BMIM]3PMo12O40-based MCF) exhibited high desulfurization activity in an oxidative desulfurization system. The removal of dibenzothiophene could achieve levels of 100% in 90 min. Additionally, four sulfur-containing compounds could be removed completely under mild conditions. Due to the stability of the structure, sulfur removal efficiency still reached 99.8% after the catalyst was recycled six times.

Funder

Scientific Research Projects of Liaoning Provincial Department of Education

Liaoning Provincial Natural Science Foundation Joint Fund Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3