Affiliation:
1. College of Chemistry, Liaoning University, Shenyang 110036, China
2. Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China
Abstract
A new type of catalyst was synthesized by immobilizing heteropolyacid on ionic liquid-modified mesostructured cellular silica foam (denoted as MCF) and applied to the oxidative desulfurization of fuel. The surface morphology and structure of the catalyst were characterized by XRD, TEM, N2 adsorption–desorption, FT-IR, EDS and XPS analysis. The catalyst exhibited good stability and desulfurization for various sulfur-containing compounds in oxidative desulfurization. Heteropolyacid ionic liquid-based MCF solved the shortage of the amount of ionic liquid and difficult separation in the process of oxidative desulfurization. Meanwhile, MCF had a special three-dimensional structure that was not only highly conducive to mass transfer but also greatly increased catalytic active sites and significantly improved catalytic efficiency. Accordingly, the prepared catalyst of 1-butyl-3-methyl imidazolium phosphomolybdic acid-based MCF (denoted as [BMIM]3PMo12O40-based MCF) exhibited high desulfurization activity in an oxidative desulfurization system. The removal of dibenzothiophene could achieve levels of 100% in 90 min. Additionally, four sulfur-containing compounds could be removed completely under mild conditions. Due to the stability of the structure, sulfur removal efficiency still reached 99.8% after the catalyst was recycled six times.
Funder
Scientific Research Projects of Liaoning Provincial Department of Education
Liaoning Provincial Natural Science Foundation Joint Fund Project
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献