Influence of Contour Scan Variation on Surface, Bulk and Mechanical Properties of LPBF-Processed AlSi7Mg0.6

Author:

Buchenau Theresa1ORCID,Amkreutz Marc1ORCID,Bruening Hauke1,Mayer Bernd12

Affiliation:

1. Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Wiener Straße 12, 28359 Bremen, Germany

2. Faculty of Production Engineering, University of Bremen, 28359 Bremen, Germany

Abstract

Metal additive manufacturing technologies have great potential for future use in load-bearing aerospace applications, requiring a deeper understanding of mechanical performance and influencing factors. The objective of this study was to investigate the influence of contour scan variation on surface quality, tensile and fatigue strength for laser powder bed fusion samples made of AlSi7Mg0.6 material and to create high-quality as-built surfaces. The samples were produced with identical bulk and different contour scan parameters to accommodate the investigation of the impact of as-built surface texture on mechanical properties. The bulk quality was evaluated by density measurements according to Archimedes’ principle and tensile testing. The surfaces were investigated using the optical fringe projection method, and surface quality was assessed by the areal surface texture parameters Sa (arithmetic mean height) and Sk (core height, derived from material ratio curve). Fatigue life was tested at different load levels, and the endurance limit was estimated based on a logarithmic-linear relation between number of cycles and stress. All samples were found to have a relative density of more than 99%. Surface conditions distinctive in Sa and Sk were successfully created. The resulting mean values of the ultimate tensile strength σult are between 375 and 405 MPa for 7 different surface conditions. It was confirmed that the influence of contour scan variation on bulk quality is insignificant for the assessed samples. Regarding fatigue, one as-built condition was found to perform as well as surface post-processed parts and better than the as-cast material (compared to literature values). The fatigue strength at the endurance limit for 106 cycles is between 45 and 84 MPa for the three considered surface conditions.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3