Modification of Epoxy Compositions by the Application of Various Fillers of Natural Origin

Author:

Sienkiewicz Anna1ORCID,Czub Piotr1ORCID

Affiliation:

1. Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska Str. 24, 31-155 Cracow, Poland

Abstract

A series of composites based on epoxy resin filled with additives of natural origin were prepared to investigate the influence of such fillers on the properties of the epoxy compositions. For this purpose, the composites containing 5 and 10 wt.% of additive of natural origin were obtained using the dispersion of oak wood waste and peanut shells in bisphenol A epoxy resin cured with isophorone-diamine. The oak waste filler had been obtained during the assembly of the raw wooden floor. The performed studies include testing of samples prepared using unmodified and chemically modified additives. Chemical modification via mercerization and silanization was performed to increase the poor compatibility between the highly hydrophilic fillers of natural origin and the hydrophobic polymer matrix. Additionally, the introduction of NH2 groups to the structure of modified filler via 3-aminopropyltriethoxysilane, potentially takes a part in co-crosslinking with the epoxy resin. Fourier Transformed Infrared Spectroscopy (FT–IR), as well as Scanning Electron Microscopy (SEM), were carried out, to study the influence of performed chemical modification on the chemical structure and morphology of wood and peanut shell flour. SEM analyses showed significant changes in the morphology of compositions with chemically modified fillers, indicating improved adhesion of the resin to lignocellulosic waste particles. Moreover, a series of mechanical (hardness, tensile strength, flexural strength, compressive strength, and impact strength) tests were carried out, to assess the influence of the application of fillers of natural origin on the properties of epoxy compositions. All composites with lignocellulosic filler were characterized by higher compressive strength (64.2 MPa—5%U-OF, 66.4%—SilOF, 63.2—5%U-PSF, and 63.8—5%SilPSF, respectively), compared to the values recorded for the reference epoxy composition without lignocellulosic filler (59.0 MPa—REF). The highest compressive strength, among all tested samples, was recorded for the composite filled with 10 wt.% of unmodified oak flour (69.1 MPa—10%U-OF). Additionally, higher values of flexural and impact strength, concerning pure BPA-based epoxy resin, were recorded for the composites with oak filler (respectively, flexural strength: 73.8 MPa—5%U-OF and 71.5 MPa—REF; impact strength: 15.82 kJ/m2—5%U-OF, 9.15 kJ/m2—REF). Epoxy composites with such mechanical properties might be considered as broadly understood construction materials. Moreover, samples containing wood flour as a filler exhibit better mechanical properties compared to those with peanut shell flour (tensile strength for samples containing post-mercerization filler: 48.04 MPa and 40.54 MPa; while post-silanization 53.53 MPa and 42.74 MPa for compositions containing 5 wt.% of wood and peanut shell flour, respectively). At the same time, it was found that increasing the weight share of flour of natural origin in both cases resulted in the deterioration of mechanical properties.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3