A Deep-Learning Approach for Foot-Type Classification Using Heterogeneous Pressure Data

Author:

Chae Jonghyeok,Kang Young-JinORCID,Noh YoojeongORCID

Abstract

The human foot is easily deformed owing to the innate form of the foot or an incorrect walking posture. Foot deformations not only pose a threat to foot health but also cause fatigue and pain when walking; therefore, accurate diagnoses of foot deformations are required. However, the measurement of foot deformities requires specialized personnel, and the objectivity of the diagnosis may be insufficient for professional medical personnel to assess foot deformations. Thus, it is necessary to develop an objective foot deformation classification model. In this study, a model for classifying foot types is developed using image and numerical foot pressure data. Such heterogeneous data are used to generate a fine-tuned visual geometry group-16 (VGG16) and K−nearest neighbor (k-NN) models, respectively, and a stacking ensemble model is finally generated to improve accuracy and robustness by combining the two models. Through k-fold cross-validation, the accuracy and robustness of the proposed method have been verified by the mean and standard deviation of the f1 scores (0.9255 and 0.0042), which has superior performance compared to single models generated using only numerical or image data. Thus, the proposed model provides the objectivity of diagnosis for foot deformation, and can be used for analysis and design of foot healthcare products.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3