Long Term Effectiveness of Wellhead Protection Areas

Author:

Zeferino JoelORCID,Paiva Marina,Carvalho Maria do RosárioORCID,Carvalho José Martins,Almeida Carlos

Abstract

A preventive instrument to ensure the protection of groundwater is the establishment of wellhead protect areas (WPA) for public supply wells. The shape of the WPA depends on the rate of pumping and aquifer characteristics, such as the transmissivity, porosity, hydraulic gradient, and aquifer thickness. If any parameter changes after the design of the WPA, it will no longer be effective in protecting the aquifer and its catchment. With population growth in urban areas, the pressure on groundwater abstraction increases. Changes in flow, drawdowns and hydraulic gradients often occur. The purpose of this work is to evaluate the effectiveness of the WPA after a long period of establishment, in public wells with continuous pumping, located in densely populated urban area of the municipality of Montijo (Portugal). Considering the aquifer scenario in 2019, new extended WPAs were calculated using the combined results of three analytical methods and numerical modelling. In 2009 the aquifer presented hydraulic gradients varying between 0.0005 and 0.002, giving rise to a protection area with essentially circular shape. Although there was no increase in extraction flow, in 2019 the hydraulic gradients vary from 0.0008 to 0.008, and the flow directions have changed because of the water level decline. The shape of the WPA in this case is essentially elliptical and longer upstream and it can pose difficulties in the protection of public water catchments, in an urban area with already defined and consolidated land use. The best protection of the public supply wells in disturbed aquifers is obtained through numerical modeling.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3