Developing an Optimized Policy Tree-Based Reservoir Operation Model for High Aswan Dam Reservoir, Nile River

Author:

Goharian ErfanORCID,Shaltout MohamedORCID,Erfani Mahdi,Eladawy AhmedORCID

Abstract

The impacts of climate change on the Nile River and Grand Ethiopian Renaissance Dam (GERD) along with the increased water demand downstream suggest an urgent need for more efficient management of the reservoir system that is well-informed by accurate modeling and optimization of the reservoir operation. This study provides an updated water balance model for Aswan High Dam Reservoir, which was validated using combined heterogeneous sources of information, including in situ gauge data, bias-corrected reanalyzed data, and remote sensing information. To investigate the future challenges, the spatial distribution of the annual/seasonal Aswan High Dam Reservoir surface air temperature trends over the period from 1979 to 2018 was studied. An increase of around 0.48 °C per decade in average annual temperature was detected, a trend that is expected to continue until 2100. Moreover, a set of machine learning models were developed and utilized to bias-correct the reanalyzed inflow and outflow data available for Aswan High Dam Reservoir. Finally, a policy tree optimization model was developed to inform the decision-making process and operation of the reservoir system. Results from the historical test simulations show that including reliable inflow data, accurate estimation of evaporation losses, and including new regulations and added projects, such as the Toshka Project, greatly affect the simulation results and guide managers through how the reservoir system should be operated in the future.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3