Environmental Assessment of Wastewater Treatment and Reuse for Irrigation: A Mini-Review of LCA Studies

Author:

Mehmeti AndiORCID,Canaj KledjaORCID

Abstract

This paper provides an overview of existing LCA literature analyzing the environmental impacts of wastewater treatment and reuses, with irrigation as a process or scenario. Fifty-nine (n = 59) papers published between 2010 and 2022 were reviewed to provide insights into the methodological choices (goals, geographical scope, functional units, system boundaries, life cycle impact assessment (LCIA) procedures). The results show that LCA research has steadily increased in the last six years. The LCAs are case-study specific, apply a process perspective, and are primarily conducted by European authors. The LCAs are mainly midpoint-oriented with global warming, acidification and eutrophication potential as the most common impact categories reported. Volumetric-based functional units are the most widely applied. The most commonly used LCIA models were ReCiPe and CML, with Ecoinvent as the most commonly used database and SimaPro as the primary LCA software tool. Despite the fact that these methods cover a wide range of midpoint impact categories, nearly half of the studies focused on a few life cycle impact category indicators. In many studies, the LCA scope is frequently narrowed, and the assessment does not look at the cradle-to-grave system boundary but rather at cradle-to-gate or gate-to-gate system boundaries. Regardless of technology or other system boundary assumptions, the design of environmentally efficient wastewater reuse schemes is primarily determined by the type of energy supplied to the product’s life cycle. Our findings highlight that more holistic studies that take into account the expansion of system boundaries and the use of a broad set of environmental impact categories, supported by uncertainty and/or sensitivity analysis, are required. The overview presented in this paper serves as groundwork for future LCA studies in the field of irrigation with treated wastewater.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3