Fine Crop Classification Based on UAV Hyperspectral Images and Random Forest

Author:

Wang Zhihua,Zhao Zhan,Yin Chenglong

Abstract

The classification of unmanned aerial vehicle hyperspectral images is of great significance in agricultural monitoring. This paper studied a fine classification method for crops based on feature transform combined with random forest (RF). Aiming at the problem of a large number of spectra and a large amount of calculation, three feature transform methods for dimensionality reduction, minimum noise fraction (MNF), independent component analysis (ICA), and principal component analysis (PCA), were studied. Then, RF was used to finely classify a variety of crops in hyperspectral images. The results showed: (1) The MNF–RF combination was the best ideal classification combination in this study. The best classification accuracies of the MNF–RF random sample set in the Longkou and Honghu areas were 97.18% and 80.43%, respectively; compared with the original image, the RF classification accuracy was improved by 6.43% and 8.81%, respectively. (2) For this study, the overall classification accuracy of RF in the two regions was positively correlated with the number of random sample points. (3) The image after feature transform was less affected by the number of sample points than the original image. The MNF transform curve of the overall RF classification accuracy in the two regions varied with the number of random sample points but was the smoothest and least affected by the number of sample points, followed by the PCA transform and ICA transform curves. The overall classification accuracies of MNF–RF in the Longkou and Honghu areas did not exceed 0.50% and 3.25%, respectively, with the fluctuation of the number of sample points. This research can provide reference for the fine classification of crops based on UAV-borne hyperspectral images.

Funder

National Science and Technology Fundamental Resources Survey Project

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference36 articles.

1. Practice and Application of Information Technology in Precision Agriculture—Review of Low-Altitude Remote Sensing Technology and Its Application in Precision Agriculture;Weiguang;Chin. J. Agric. Resour. Reg. Plan.,2021

2. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach

3. Spatial–Spectral Fusion Based on Conditional Random Fields for the Fine Classification of Crops in UAV-Borne Hyperspectral Remote Sensing Imagery

4. Classification of Protection Forest Tree Species Based on UAV Hyperspectral Data;Qingzhan;Trans. Chin. Soc. Agric. Mach.,2021

5. Monitoring of Corn Canopy Blight Disease Based on UAV Hyperspectral Method;Hui;Spectrosc. Spectr. Anal.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3