A Distributed Hybrid Indexing for Continuous KNN Query Processing over Moving Objects

Author:

Bareche ImeneORCID,Xia YingORCID

Abstract

The magnitude of highly dynamic spatial data is expanding rapidly due to the instantaneous evolution of mobile technology, resulting in challenges for continuous queries. We propose a novel indexing approach model, namely, the Velocity SpatioTemporal indexing approach (VeST), for continuous queries, mainly Continuous K-nearest Neighbor (CKNN) and continuous range queries using Apache Spark. The proposed structure is based on a selective velocity partitioning method, i.e., since different objects have varying speeds, we divide the objects into two sets according to the actual mean speed we calculate before building the index and accessing data. Then the adopted indexing structure base unit comprises a nonoverlapping R-tree and a two dimension grid. The tree divides the space into nonoverlapping minimum bounding regions that point to the grids. Then, the uniform grid stores the object data of leaf nodes. This access method reduces the update cost and improves response time and query precision. In order to enhance performances for large-scale processing, we design a compact multilayer index structure on a distributed setting and propose a CKNN search algorithm for accurate results using a candidate cell identification process. We provide a comprehensive vision of our indexing model and the adopted query technique. The simulation results show that for query intervals of 100, the proposed approach is 13.59 times faster than the traditional approach, and the average time of the VeST approach is less than 0.005 for all query intervals. This proposed method improves response time and query precision. The precision of the VeST algorithm is almost equal to 100% regardless of the length of the query interval.

Funder

National Natural Science Foundation of China

key cooperation project of Chongqing municipal education commission of china

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3