High-Precision Adjustment of Welding Depth during Laser Micro Welding of Copper Using Superpositioned Spatial and Temporal Power Modulation

Author:

Hummel MarcORCID,Häusler André,Gillner Arnold

Abstract

For joining metallic materials for battery applications such as copper and stainless steel, laser beam micro welding with beam sources in the near-infrared range has become established in recent years. In laser beam micro welding, spatial power modulation describes the superposition of the linear feed motion with an oscillating motion. This modulation method serves to widen the cross-section of the weld seam as well as to increase the process stability. Temporal power modulation refers to the controlled modulation of the laser power over time during the welding process. In this paper, the superposition of both temporal and spatial power modulation methods is presented, which enables a variable control of the weld penetration depth. Three weld geometries transverse to the feed direction are part of this investigation: the compensation of the weld penetration depth due to the asymmetric path movement during spatial power modulation only, a W-shaped weld profile, and a V-shaped. The weld geometries are investigated by the bed on plate weld tests with CuSn6. Furthermore, the use of combined power modulation for welding tests in butt joint configuration between CuSn6 and stainless steel 1.4301 with different material properties is investigated. The study shows the possibility of precise control of the welding depth by this methodology. Depending on the material combination, the desired regions with maximum and minimum welding depth can be achieved by the control of local and temporal power modulation on the material surface.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference28 articles.

1. Laser Beam Micro welding of Lithium-ion Battery Cells with Copper Connectors for Electrical Connections in Energy Storage Devices;Heinen;Laser Eng.,2017

2. Laser Micro Welding for Ribbon Bonding

3. Laser beam welding of electrical interconnections for lithium-ion batteries

4. Process Stabilization at welding Copper by Laser Power Modulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3