Thermomechanical Impact of the Single-Lip Deep Hole Drilling on the Surface Integrity on the Example of Steel Components

Author:

Nickel JanORCID,Baak NikolasORCID,Volke Pascal,Walther FrankORCID,Biermann DirkORCID

Abstract

The fatigue behavior of components made of quenched and tempered steel alloys is of elementary importance, especially in the automotive industry. To a great extent, the components’ fatigue strength is influenced by the surface integrity properties. For machined components, the generated surface is often exposed to the highest thermomechanical loads, potentially resulting in transformations of the subsurface microstructure and hardness as well as the residual stress state. While the measurement of the mechanical load using dynamometers is well established, in-process temperature measurements are challenging, especially for drilling processes due to the process kinematics and the difficult to access cutting zone. To access the impact of the thermomechanical load during the single-lip drilling process on the produced surface integrity, an in-process measurement was developed and applied for different cutting parameters. By using a two-color pyrometer for temperature measurements at the tool’s cutting edge in combination with a dynamometer for measuring the occurring force and torque, the influence of different cutting parameter variations on the thermomechanical impact on the bore surface are evaluated. By correlating force and temperature values with the resultant surface integrity, a range of process parameters can be determined in which the highest dynamic strength of the samples is expected. Thermally induced defects, such as the formation of white etching layers (WEL), can be avoided by the exact identification of critical parameter combinations whereas a mechanically induced microstructure refinement and the induction of residual compressive stresses in the subsurface zone is targeted. Further, eddy-current analysis as a non-destructive method for surface integrity evaluation is used for the characterization of the surface integrity properties.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference15 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3