Prediction and Compensation of Color Deviation by Response Surface Methodology for PolyJet 3D Printing

Author:

Wei XingjianORCID,Bhardwaj AbhinavORCID,Zeng LiORCID,Pei ZhijianORCID

Abstract

PolyJet 3D printing can produce any color by mixing multiple materials. However, there are often large deviations between the measured color of printed samples and the target color (when the target color is used as the specified color in the printer software). Therefore, to achieve a target color on a printed sample, the specified color in the printer software should not be the same as the target color. This study applies response surface methodology (RSM) to determine the optimal color specification to compensate for color deviations of the measured color of printed samples from the target color in PolyJet 3D printing. The RSM has three steps. First, a set of experiments are designed for a target color according to central composite design. Second, the experimental data are used to develop a second-order multivariate multiple regression model to predict the deviation between the measured color and the target color. Third, the optimal color specification (often different from the target color) is determined by using the developed predictive model and the desirability function. When the optimal color specification is used as the specified color in the printer software, the deviation between the predicted color of the printed sample and the target color is minimized. The proposed method is applied to four target colors to demonstrate its effectiveness. The results show that the proposed method performs better than the conventional color specification method without compensation in achieving the four target colors by 33% on average.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference22 articles.

1. Inkjet 3D Printing;Napadensky,2009

2. Stratasys J750 Digital Anatomy 3D Printerhttps://www.stratasys.com/3d-printers/j750-digital-anatomy

3. Understanding Color;Goldstein,2018

4. Accurate and Computational: A review of color reproduction in Full-color 3D printing

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3