Profiling Analysis of Tryptophan Metabolites in the Urine of Patients with Parkinson’s Disease Using LC–MS/MS

Author:

Chung So Hyeon1,Yoo Dallah2,Ahn Tae-Beom2,Lee Wonwoong3,Hong Jongki1ORCID

Affiliation:

1. College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea

2. Department of Neurology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea

3. College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea

Abstract

Although Parkinson’s disease (PD) is a representative neurodegenerative disorder and shows characteristic motor impediments, the pathophysiological mechanisms and treatment targets for PD have not yet been clearly identified. Since several tryptophan metabolites produced by gut microbiota could pass the blood–brain barrier and, furthermore, might influence the central nervous system, tryptophan metabolites within the indole, kynurenine, and serotonin metabolic pathways might be the most potent targets for PD development. Furthermore, most metabolites are circulated via the blood, play roles in and/or are metabolized via the host organs, and finally are excreted into the urine. Therefore, profiling the overall tryptophan metabolic pathways in urine samples of patients with PD is important to understanding the pathological mechanisms, finding biomarkers, and discovering therapeutic targets for PD. However, the development of profiling analysis based on tryptophan metabolism pathways in human urine samples is still challenging due to the wide physiological ranges, the varied signal response, and the structural diversity of tryptophan metabolites in complicated urine matrices. In this study, an LC–MS/MS method was developed to profile 21 tryptophan metabolites within the indole, kynurenine, and serotonin metabolic pathways in human urine samples using ion-pairing chromatography and multiple reaction monitoring determination. The developed method was successfully applied to urine samples of PD patients (n = 41) and controls (n = 20). Further, we investigated aberrant metabolites to find biomarkers for PD development and therapeutic targets based on the quantitative results. Unfortunately, most tryptophan metabolites in the urine samples did not present significant differences between control and PD patients, except for indole-3-acetic acid. Nonetheless, indole-3-acetic acid was reported for the first time for its aberrant urinary levels in PD patients and tentatively selected as a potential biomarker for PD. This study provides accurate quantitative results for 21 tryptophan metabolites in biological samples and will be helpful in revealing the pathological mechanisms of PD development, discovering biomarkers for PD, and further providing therapeutic targets for various PD symptoms. In the near future, to further investigate the relationship between gut microbial metabolites and PD, we will employ studies on microbial metabolites using plasma and stool samples from control and PD patients.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Reference42 articles.

1. Parkinson’s Disease: Mechanisms and Models;Dauer;Neuron,2003

2. The Role of The Gut Microbiome in Parkinson’s Disease;Gallop;J. Geriatr. Psychiatry Neurol.,2021

3. Non-motor symptoms in Parkinson’s disease;Pfeiffer;Park. Relat. Disord.,2016

4. Parkinson’s disease as a multisystem disorder;Klingelhoefer;J. Neural Transm.,2017

5. Drug Delivery Across the Blood-Brain Barrier;Chen;Curr. Drug Deliv.,2004

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3