Design, Synthesis, and Biological Evaluation of a Novel [18F]-Labeled Arginine Derivative for Tumor Imaging

Author:

Huang Yong1,Li Chengze1,Li Zhongjing1,Xie Yi2,Chen Hualong2,Li Shengli3,Liang Ying1,Wu Zehui2ORCID

Affiliation:

1. National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China

2. Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China

3. Department of Laboratory Animal Science, Capital Medical University, Beijing 100069, China

Abstract

To better diagnose and treat tumors related to arginine metabolism, (2S,4S)-2-amino-4-(4-(2-(fluoro-18F)ethoxy)benzyl)-5-guanidinopentanoic acid ([18F]7) was designed and prepared by introducing [18F]fluoroethoxy benzyl on carbon-4 of arginine. [18F]7 and 7 were successfully prepared using synthesis methods similar to those used for (2S,4S)-4-[18F]FEBGln and (2S,4S)-4-FEBGln, respectively. In vitro experiments on cell transport mechanisms showed that [18F]7 was similar to (2S,4S)4-[18F]FPArg and was transported into tumor cells by cationic amino acid transporters. However, [18F]7 can also enter MCF-7 cells via ASC and ASC2 amino acid transporters. Further microPET-CT imaging showed that the initial uptake and retention properties of [18F]7 in MCF-7 subcutaneous tumors were good (2.29 ± 0.09%ID/g at 2.5 min and 1.71 ± 0.09%ID/g at 60 min after administration), without significant defluorination in vivo. However, compared to (2S,4S)4-[18F]FPArg (3.06 ± 0.59%ID/g at 60 min after administration), [18F]7 exhibited lower tumor uptake and higher nonspecific uptake. When further applied to U87MG imaging, [18F]7 can quickly visualize brain gliomas (tumor-to-brain, 1.85 at 60 min after administration). Therefore, based on the above results, [18F]7 will likely be applied for the diagnosis of arginine nutrition-deficient tumors and efficacy evaluations.

Funder

National Cancer Center

Shenzhen High-level Hospital Construction Fund

Beijing Natural Science Foundation

Medical Innovation Capability Improvement Plan of Capital Medical University

Shenzhen Science and Technology Program of China

Shenzhen Clinical Research Center for Cancer

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3