Selenadiazole Inhibited Adenovirus-Induced Apoptosis through the Oxidative-Damage-Mediated Bcl-2/Stat 3/NF-κB Signaling Pathway

Author:

Liu Xia1,Lai Jia1,Su Jingyao1,Zhang Kelan1,Li Jiali1,Li Chuqing1,Ning Zhihui1,Wang Chenyang1,Zhu Bing1,Li Yinghua1ORCID,Zhao Mingqi1

Affiliation:

1. Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China

Abstract

Human adenovirus type 7 (HAdV7) infection causes severe pneumonia, yet there are still no breakthroughs in treatment options for adenovirus, and the road to antiviral drug development faces major challenges. We attempted to find new drugs and we stumbled upon one: selenadiazole. Selenadiazole has been shown to have significant anti-tumor effects due to its unique chemical structure and drug activity. However, its effectiveness against viruses has not been evaluated yet. In our study, selenadiazole also showed superior antiviral activity. In vitro experiments, selenadiazole was able to inhibit adenovirus-mediated mitochondrial-oxidative-damage-related apoptosis, and in in vivo experiments, selenadiazole was able to inhibit apoptosis by modulating the apoptotic signaling pathway Bcl-2/Stat3/NF-κB, etc., and was able to largely attenuate adenovirus-infection-induced pneumonia and lung injury in mice. This study aims to describe a new antiviral treatment option from the perspective of anti-adenovirus-mediated oxidative stress and its associated apoptosis and to provide theoretical guidance for the treatment of clinical adenovirus infection to a certain extent.

Funder

Open Project of Guangdong Key Laboratory of Marine Materia

Technology planning projects of Guangzhou

Guangdong Natural Science Foundation

Open Fund of Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications

Guangzhou Medical University Students’ Science and Technology Innovation Project

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3