Author:
Jin Chunhong,Cai Mingjie,Xu Zhihao
Abstract
This paper proposes a command filtering backstepping (CFB) scheme with full-state constraints by leading into time-varying barrier Lyapunov functions (T-BLFs) for a dual-motor servo system with partial asymmetric dead-zone. Firstly, for the convenience of the controller design, the conventional partial asymmetric dead-zone model was replaced with a new smooth differentiable model owing to its non-smoothness. Secondly, neural networks (NNs) were utilized to approximate the nonlinearity that exists in the dead-zone model, improving the control performance. In addition, CFB was utilized to deal with the inherent computational explosion problem of the traditional backstepping method, and an error compensation mechanism was introduced to further reduce the filtering errors. Then, by applying the T-BLF to the CFB process, the states of the system never violated the prescribed constraints, and all signals in the dual-motor servo system were bounded. The tracking error and synchronization error could converge to a small desired neighborhood of the origin. In the end, the effectiveness of the proposed control scheme was verified through simulations.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
China Postdoctoral Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献