Abstract
In this paper, we present a probabilistic approach which uses nadir-looking wide-band radar to detect oil spills on rough ocean surface. The proposed approach combines a single-layer scattering model with Bayesian statistics to evaluate the probability of detection of oil slicks, within a plausible range of thicknesses, on seawater. The difference between several derived detection algorithms is defined in terms of the number of frequencies used (within C-to-X-band ranges), as well as of the number of radar observations. Performance analysis of all three types of detectors (single-, dual- and tri-frequency) is done under different surface-roughness scenarios. Results show that the probability of detecting an oil slick with a given thickness is sensitive to the radar frequency. Multi-frequency detectors prove their ability to overcome the performance of the single- and dual-frequency detectors. Higher probability of detection is obtained when using multiple observations. The roughness of the ocean surface leads to a loss in the reflectivity values, and therefore decreases the performance of the detectors. A possible way to make use of the drone systems in the contingency planning is also presented.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献