Pore Structure Evolution in Sandstone of Underground Gas Storage during Cyclic Injection and Production Based on Nuclear Magnetic Resonance Technology

Author:

Qiu Xiaosong1,Liu Hejuan23,Liu Mancang1,Mao Haijun23,Wang Duocai4,Ying Qiqi23,Ban Shengnan23

Affiliation:

1. Key Laboratory of Underground Storage of Oil and Gas Engineer of China National Petroleum Corporation, Langfang 065007, China

2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. PipeChina West East Gas Pipeline Company, Shanghai 200120, China

Abstract

The underground gas storage (UGS) in depleted sandstone reservoirs forms the largest proportion of the UGS market in China. Multiple cycles of natural gas injection and production in the sandstone cause the rapid increase and drawdown of pore pressure, which may induce damage to the rock skeleton structure, and cause complex fluid flow paths in the sandstone reservoir. In this paper, transverse relaxation time (T2), nuclear magnetism resonance imaging, and high-pressure mercury intrusion analysis are combined to evaluate the variation in pore structure of medium-grained sandstone. The results show that cyclic injection and production of fluid leads to a slight increase in total pore volume, indicating that weak damage to rocks occurs. The T2 spectrum at the low pore pressure (10 MPa) and high pore pressure (25 MPa) both show that the shrinkage of the medium-size pores occurs after multiple cycles of injection and production. The pore volume of large-size pores was not highly correlated with the number of cycles. With the increase in pore pressure, the pore volume ratio under high pore pressure increased with the number of cycles, while it fluctuated strongly under low pore pressure.

Funder

Pioneer Hundred Talents Program of Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3