Analysis of Selected Dielectric Properties of Epoxy-Alumina Nanocomposites Cured at Stepwise Increasing Temperatures

Author:

Dąda Anna1ORCID,Błaut Paweł1ORCID,Kuniewski Maciej2ORCID,Zydroń Paweł2ORCID

Affiliation:

1. AGH Doctoral School, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

2. Department of Electrical and Power Engineering, Faculty of Electrical Engineering, Automatics, Computer Science, and Biomedical Engineering, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

Abstract

The paper presents the effects of gradual temperature curing on the dielectric properties of epoxy nanocomposite samples. Samples were prepared based on Class H epoxy resin filled with nano-alumina (Al2O3) for different wt% loadings (0.5 wt% to 5.0 wt%) and two different filler sizes (13 nm and <50 nm), i.e., two different specific surface area values. During the research, specimen sets were cured gradually at increasingly higher temperatures (from 60 °C to 180 °C). Broadband dielectric spectroscopy (BDS) was used to determine the characteristics of the dielectric constant and the dielectric loss factor in the frequency range from 10−3 Hz to 105 Hz. As a result, it was possible to analyze the impact of the progressing polymer structure thermosetting processes on the observed dielectric parameters of the samples. The nano-Al2O3 addition with 0.5 wt%, 1.0 wt%, and 3.0 wt% resulted in a decrease in dielectric constant values compared to neat epoxy resin samples. The most significant reductions were recorded for samples filled with 0.5 wt% of 13 nm and <50 nm powders, by about 15% and 11%, respectively. For all tested samples, the curing process at a gradually higher temperature caused a slight decrease in the dielectric constant (approx. 2% to 9%) in the whole frequency range. Depending on the nanofiller content and the curing stage, the dielectric loss factor of the nanocomposite may be lower or higher than that of the neat resin. For all tested samples cured at 130 °C (and post-cured at 180 °C), the differences in the dielectric loss factor characteristics for frequencies greater than 100 Hz are low. For frequencies < 100 Hz, there are prominent differences in the characteristics related to the size of the nanoparticle and the individual wt% value. At a small nanofiller amount (0.5 wt%), a decrease in the dielectric constant and dielectric loss factor was observed for frequencies < 100 Hz for samples with nanofillers of both sizes.

Funder

Polish Minister of Education and Science for AGH University of Science and Technology, Krakow, Poland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3