Monolayer Graphene Terahertz Detector Integrated with Artificial Microstructure

Author:

Jiang Mengjie12ORCID,Zhang Kaixuan12,Lv Xuyang12,Wang Lin2,Zhang Libo23,Han Li23,Xing Huaizhong1

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Department of Optoelectronic Science and Engineering, Donghua University, Shanghai 201620, China

2. State Key Laboratory for Infrared, Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-tian Road, Shanghai 200083, China

3. Hangzhou Institute for Advanced Study, College of Physics and Optoelectronic Engineering, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou 310024, China

Abstract

Graphene, known for its high carrier mobility and broad spectral response range, has proven to be a promising material in photodetection applications. However, its high dark current has limited its application as a high-sensitivity photodetector at room temperature, particularly for the detection of low-energy photons. Our research proposes a new approach for overcoming this challenge by designing lattice antennas with an asymmetric structure for use in combination with high-quality monolayers of graphene. This configuration is capable of sensitive detection of low-energy photons. The results show that the graphene terahertz detector-based microstructure antenna has a responsivity of 29 V·W−1 at 0.12 THz, a fast response time of 7 μs, and a noise equivalent power of less than 8.5 pW/Hz1/2. These results provide a new strategy for the development of graphene array-based room-temperature terahertz photodetectors.

Funder

National Key R&D Program of China

Fundamental Research Funds for the Central Universities

Zhejiang Lab

Shanghai Natural Science Foundation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3