Abstract
Considering climate change, recent political debates often focus on measures to reduce CO2 emissions. One key component is the reduction of emissions produced by motorized vehicles. Since the amount of emission directly correlates to the velocity of a vehicle via energy consumption factors, a general speed limit is often proposed. This article presents a methodology to combine openly available topology data of road networks from OpenStreetMap (OSM) with pay-per-use API traffic data from TomTom to evaluate such measures transparently by analyzing historical real-world circumstances. From our exemplary case study of the German motorway network, we derive that most parts of the motorway network on average do not reach their maximum allowed speed throughout the day due to traffic, construction sites and general road utilization by network participants. Nonetheless our findings prove that the introduction of a speed limit of 120 km per hour on the German autobahn would restrict 50.74% of network flow kilometers for a CO2 reduction of 7.43% compared to the unrestricted state.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献