Thermal Technical Analysis of Lightweight Timber-Based External Wall Structures with Ventilated Air Gap

Author:

Valachova DenisaORCID,Badurova Andrea,Skotnicova IvetaORCID

Abstract

Lightweight timber-based structures are an increasingly common part of envelopes of new buildings due to increasing requirements for their energy performance. In addition, due to the fact that wood is a sustainable material, it can be assumed that the share of these structures in civil engineering will continue to increase. The subject of this article is the thermal analysis of timber-based lightweight structures under winter conditions to expand information about thermal processes in these structures. This article deals with the lightweight timber-based external wall structures with a ventilated facade and a double-skin roof structure. Experimental temperature measurements inside the structures and ventilated air gaps are used to perform the thermal analysis. By comparing experimental and theoretical data obtained by performing numerical simulation, it was shown that for achieving an ideal match of numerical simulations and measured physical properties it is necessary to take into account not only external temperatures affecting these structures, but also other factors such as solar radiation and heat emission into the cold night sky. In the case of the external walls with ventilated facade, the benefit of a ventilated air gap has been demonstrated in relation to smaller temperature fluctuations that affect the structures.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3