Calcifying Bacteria Flexibility in Induction of CaCO3 Mineralization

Author:

Golovkina Darya A.,Zhurishkina Elena V.,Ivanova Lyubov A.ORCID,Baranchikov Alexander E.ORCID,Sokolov Alexey Y.,Bobrov Kirill S.ORCID,Masharsky Alexey E.ORCID,Tsvigun Natalia V.,Kopitsa Gennady P.ORCID,Kulminskaya Anna A.ORCID

Abstract

Microbially induced CaCO3 precipitation (MICP) is considered as an alternative green technology for cement self-healing and a basis for the development of new biomaterials. However, some issues about the role of bacteria in the induction of biogenic CaCO3 crystal nucleation, growth and aggregation are still debatable. Our aims were to screen for ureolytic calcifying microorganisms and analyze their MICP abilities during their growth in urea-supplemented and urea-deficient media. Nine candidates showed a high level of urease specific activity, and a sharp increase in the urea-containing medium pH resulted in efficient CaCO3 biomineralization. In the urea-deficient medium, all ureolytic bacteria also induced CaCO3 precipitation although at lower pH values. Five strains (B. licheniformis DSMZ 8782, B. cereus 4b, S. epidermidis 4a, M. luteus BS52, M. luteus 6) were found to completely repair micro-cracks in the cement samples. Detailed studies of the most promising strain B. licheniformis DSMZ 8782 revealed a slower rate of the polymorph transformation in the urea-deficient medium than in urea-containing one. We suppose that a ureolytic microorganism retains its ability to induce CaCO3 biomineralization regardless the origin of carbonate ions in a cell environment by switching between mechanisms of urea-degradation and metabolism of calcium organic salts.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3