Intelligent Agents and Causal Inference: Enhancing Decision-Making through Causal Reasoning

Author:

Vélez Bedoya Jairo Iván12ORCID,González Bedia Manuel1,Castillo Ossa Luis Fernando23ORCID

Affiliation:

1. Departamento de Informatica e Ingenieria de Sistemas, Universidadde Zaragoza, 50009 Zaragoza, Spain

2. Departamento de Sistemas e Informática, Facultad de Ingeniería, Universidad de Caldas, Manizales 170001, Colombia

3. Departamento de Ingenieria Industrial, Universidad Nacional de Colombia Sede Manizales, Manizales 170001, Colombia

Abstract

This study examines the incorporation of causal inference methods into intelligent entities and examines the benefits of utilizing causal reasoning to improve decision-making procedures. This study entails conducting an experimental evaluation within a video game setting to evaluate the performance of three separate agent types: ExplorerBOT, GuardBOT, and CausalBOT. The ExplorerBOT utilizes a stochastic path selection technique for task completion, whereas the GuardBOT remains immobile yet exhibits exceptional proficiency in identifying and neutralizing other bots. On the other hand, the CausalBOT utilizes sophisticated causal inference methods to examine the underlying factors contributing to the failures noticed in the task completion of the ExplorerBOT. The aforementioned feature allows CausalBOT to make informed decisions by selecting paths that have a greater likelihood of achieving success. The main purpose of these experiments is to assess and compare the effectiveness of two distinct bots, namely ExplorerBOT and CausalBOT, in accomplishing their respective objectives. To facilitate comparison, two iterations of the ExplorerBOT are utilized. The initial iteration is predicated exclusively on stochastic path selection and necessitates a more profound understanding of the variables that impact the achievement of tasks. On the other hand, the second version integrates an algorithm for informed search. In contrast, CausalBOT employs causal inference techniques to discover the underlying causes of failures exhibited by ExplorerBOTs and collect pertinent data. Through the process of discerning the fundamental causal mechanisms, CausalBOT is able to make well-informed decisions by selecting pathways that maximize the probability of successfully completing a given job. The utilization of this approach greatly boosts the decision-making powers of CausalBOT, hence enabling it to effectively adapt and overcome problems in a more efficient manner when compared to alternative agents.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3