The Effect of Varying Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System Parameters on Wind Energy Prediction: A Comparative Study

Author:

Oguz Erenler Gokce1,Bulus Halil Nusret2ORCID

Affiliation:

1. Department of Software Engineering, Faculty of Engineering, Kirklareli University, Campus of Kayali, Kirklareli 39000, Turkey

2. Department of Computer Engineering, Corlu Faculty of Engineering, Tekirdag Namik Kemal University, Tekirdag 59860, Turkey

Abstract

Owing to the development of technology, the majority of nations throughout the world now rely on fossil fuels and nuclear power plants to meet their energy needs. However, as academic research on this subject has shown, it has become clear that alternative energy uses are necessary due to the gradual depletion of these fuels and their significant negative effects on the environment. In order to ensure energy diversity and end the energy shortage, the development of renewable energy sources is crucial. The prediction of wind power is crucial for effectively utilizing the potential of wind energy. In this study, an adaptive neuro-fuzzy inference system (ANFIS) and an artificial neural network (ANN) have been developed for the prediction of wind power. In this study, data sets were created by taking the daily average wind speeds of the selected wind turbine, the daily average power values it produces, and the daily average wind speed values in the Velimese region. By creating single-hidden layer and multi-hidden layer ANN models, the network was trained multiple times with different activation functions and different numbers of neurons, and wind power prediction was performed. In the ANFIS model, the number of membership functions is kept constant, and wind power prediction is performed using different membership functions. With these ANFIS and ANN models developed with different parameter combinations, it is aimed to determine the most efficient model by performing daily average wind power prediction. Parameter combinations were tested to determine the appropriate models, and as a result, the ANN and ANFIS models were compared with each other.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3