Influence of Zinc Oxide Nanoparticles in In Vitro Culture and Bacteria Bacillus thuringiensis in Ex Vitro Conditions on the Growth and Development of Blackberry (Rubus fruticosus L.)

Author:

Krzepiłko Anna1,Prażak Roman2,Matyszczuk Katarzyna1

Affiliation:

1. Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, St. Skromna 8, 20-704 Lublin, Poland

2. Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, St. Akademicka 15, 20-950 Lublin, Poland

Abstract

The blackberry, valued for its delicious fruit, has gained attention for its medicinal bioactive compounds. In vitro cultivation methods, including nanoparticle enhancement, are increasingly chosen due to their advantages over traditional propagation techniques. We tested the effect of commercial zinc oxide nanoparticles (ZnONPs) on the growth and development of blackberry (Rubus fruticosus L.) of the Navaho variety in an in vitro culture on MS medium supplemented with 0.6 mg dm−3 BA, 0.1 mg dm−3 IBA, 0.01 mg dm−3 GA3, and various concentrations of zinc oxide nanoparticles: 0 (control), 10, 20, 30, and 40 mg dm−3. The morphological features of the plantlets were assessed two and three months after the start of the culture. Selected biological characteristics of the plantlets were determined. The values of the morphological and biological parameters assessed in the plantlets from in vitro culture depended on the concentration of ZnONPs in the medium. Increasing the concentration of ZnONPs negatively affected the number and length of shoots and roots and the fresh weight of the plantlets. The total phenolic content in the plantlets from the treatments with ZnONPs was lower than in the control plants, but the total antioxidant capacity as measured by the ABTS method was higher. The content of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids in the blackberry plantlets decreased at higher concentrations of ZnONPs in the medium. The addition of zinc oxide nanoparticles increased the zinc content and reduced the iron content in the blackberry plantlets. Concentrations of 10–30 mg dm−3 ZnONPs increased the concentrations of potassium, calcium, magnesium, zinc, manganese, and copper, while at the highest concentration of 40 mg dm−3 ZnONPs, the concentrations of these minerals were similar to the control, except for a lower content of calcium and manganese. The plantlets from the in vitro culture growing in the presence of ZnONPs were acclimatized to ex vitro conditions in control soil and soil inoculated with Bacillus thuringiensis. Bacteria added to the ex vitro substrate favourably influenced the growth and development of the shoots and roots of the blackberry plants and their fresh weight.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3