Multiplicative Improved Coherence Factor Delay Multiply and Sum Algorithm for Clutter Removal in a Microwave Breast Tumor Imaging System

Author:

Guo Donghao1,Wang Jingjing1ORCID,Liu Huanqing1,Bai Yuxi1,Li Yongcheng1ORCID,Liu Weihao1

Affiliation:

1. School of Physics and Electronics, Shandong Normal University, Jinan 250358, China

Abstract

In the medical field, microwave imaging technology has experienced rapid development due to its non-invasive and non-radioactive nature. The confocal algorithm is a method commonly used for microwave breast cancer imaging, with the key objective of removing clutter in images to achieve high-quality results. However, the current methods are facing challenges in removing clutter. In order to reduce the clutter in images, a multiplicative improved coherence factor delay multiply and sum algorithm based on the maximum interclass differencing method is proposed. The algorithm compares the starting and ending moments of tumor signals in different channels to determine whether the tumor-scattered signals in different channels overlap in time. An improved coherence coefficient is obtained by summing the non-overlapping signals and multiplying the time window. The multiplicative improved coherence factor, which is obtained by multiplying the coherence coefficients of the improved multi-pair signals, is then multiplied by the focal point intensity obtained using the delay multiply and sum algorithm to reduce clutter in an image. To evaluate the performance of the proposed algorithm, several low-cost uniform and non-uniform models of human breast and tumor tissue with dielectric properties were prepared for testing. The experimental results show that, compared to the existing algorithm, the proposed algorithm can greatly reduce the clutter in images, with a signal-to-clutter ratio of at least 4 dB higher as well as contrast at least six-fold higher.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3