Discrete Element Study on the Mechanical Response of Soft Rock Considering Water-Induced Softening Effect

Author:

Liu Chi12ORCID,Liu Xiaoli1ORCID,Peng Haoyang3,Wang Enzhi1,Wang Sijing14

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

2. Deep Mining and Rock Burst Research Branch, Chinese Institute of Coal Science, Beijing 100013, China

3. Yalong River Hydropower Development Company, Ltd., Chengdu 610051, China

4. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

Soft rocks are prone to softening upon contact with water, and their rapid deterioration in mechanical properties is a significant cause of instability and failure soft rock masses. Besides, the macroscopic mechanical response of rocks is closely related to the mineral composition and microstructure. The purpose of this research is to consider the heterogeneity factors and softening effects, and systematically investigate the influence of confining pressure and softening time on the damage and failure characteristics of soft rocks. The Voronoi polygons generated using a built-in Voronoi diagram algorithm and contact elements (the substances with cementing capacity) of UDEC discrete element method are employed to represent the clastic grains and interfacial cemented bonding (ICB) structures in soft rock. Based on the Voronoi probabilistic method, the grain-based discrete element model (GB-DEM) considering the softening effect is established by introducing a meso-scale softening damage factor, along with a detailed calibration method for meso-scale parameters. The damage parameters such as the crack initiation threshold, the crack damage threshold, the damage degree, and the tensile and shear crack ratio are then analyzed. The study results indicate that the simulated strengths of the heterogeneous models under different water immersion time are in good agreement with the experimental results. The thresholds for crack initiation and damage, the proportions of tensile and shear cracks, and the degree of damage are positively correlated with the confining pressure. The attenuation patterns of the crack initiation threshold and damage threshold in the heterogeneous models with water immersion time are highly consistent with the meso-scale softening damage factor. The damage parameters show a trend of increasing first and then decreasing with the extension of water immersion time. The cement–cement contact elements are the main locations for crack initiation and propagation. The research outcomes have significant theoretical and practical implications for understanding and predicting the mechanical behavior of soft rocks under a water–rock interaction.

Funder

National Natural Science Foundation of China

Open Research Fund Program of State key Laboratory of Hydroscience and Engineering

Special Project of Science and Technology Innovation and Venture Capital of Tiandi Co., Ltd.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3