Instrument Detection and Descriptive Gesture Segmentation on a Robotic Surgical Maneuvers Dataset

Author:

Rivas-Blanco Irene1ORCID,López-Casado Carmen1ORCID,Herrera-López Juan M.1ORCID,Cabrera-Villa José1,Pérez-del-Pulgar Carlos J.1ORCID

Affiliation:

1. Institute for Mechatronics Engineering and Cyber-Physical Systems (IMECH.UMA), University of Málaga, Andalucía Tech, 29070 Málaga, Spain

Abstract

Large datasets play a crucial role in the progression of surgical robotics, facilitating advancements in the fields of surgical task recognition and automation. Moreover, public datasets enable the comparative analysis of various algorithms and methodologies, thereby assessing their effectiveness and performance. The ROSMA (Robotics Surgical Maneuvers) dataset provides 206 trials of common surgical training tasks performed with the da Vinci Research Kit (dVRK). In this work, we extend the ROSMA dataset with two annotated subsets: ROSMAT24, which contains bounding box annotations for instrument detection, and ROSMAG40, which contains high and low-level gesture annotations. We propose an annotation method that provides independent labels for the right-handed tools and the left-handed tools. For instrument identification, we validate our proposal with a YOLOv4 model in two experimental scenarios. We demonstrate the generalization capabilities of the network to detect instruments in unseen scenarios. On the other hand, for gesture segmentation, we propose two label categories: high-level annotations that describe gestures at a maneuvers level, and low-level annotations that describe gestures at a fine-grain level. To validate this proposal, we have designed a recurrent neural network based on a bidirectional long-short term memory layer. We present results for four cross-validation experimental setups, reaching up to a 77.35% mAP.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3