Speaker Anonymization: Disentangling Speaker Features from Pre-Trained Speech Embeddings for Voice Conversion

Author:

Matassoni Marco1,Fong Seraphina2ORCID,Brutti Alessio1

Affiliation:

1. Augmented Intelligence Center, Fondazione Bruno Kessler, 38100 Trento, Italy

2. Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy

Abstract

Speech is a crucial source of personal information, and the risk of attackers using such information increases day by day. Speaker privacy protection is crucial, and various approaches have been proposed to hide the speaker’s identity. One approach is voice anonymization, which aims to safeguard speaker identity while maintaining speech content through techniques such as voice conversion or spectral feature alteration. The significance of voice anonymization has grown due to the necessity to protect personal information in applications such as voice assistants, authentication, and customer support. Building upon the S3PRL-VC toolkit and on pre-trained speech and speaker representation models, this paper introduces a feature disentanglement approach to improve the de-identification performance of the state-of-the-art anonymization approaches based on voice conversion. The proposed approach achieves state-of-the-art speaker de-identification and causes minimal impact on the intelligibility of the signal after conversion.

Funder

European Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3